一定。因為滿秩矩陣是推斷一個矩陣是否可逆的充分必要條件。若矩陣是滿秩矩陣,則為n階方陣,|A|≠0,即|A|是A的n階非零子式,符合可逆矩陣只要求|A|<>0的條件,即為可逆矩陣,同時,可逆矩陣的度行列式就是最高的不為零的子式(是n階的),所以可逆矩陣也必定是滿秩矩陣。
滿秩矩陣設(shè)A是n階矩陣, 若r(A) = n, 則稱A為滿秩矩陣。但滿秩不局限于n階矩陣。
若矩陣秩等于行數(shù),稱為行滿秩;若矩陣秩等于列數(shù),稱為列滿秩。既是行滿秩又是列滿秩則為n階矩陣即n階方陣。行滿秩矩陣就是行向量線性無關(guān),列滿秩矩陣就是列向量線性無關(guān);所以如果是方陣,行滿秩矩陣與列滿秩矩陣是等價的。
矩陣在數(shù)學(xué)中,矩陣(Matrix)是一個按照長方陣列排列的復(fù)數(shù)或?qū)崝?shù)集合。
矩陣是高等代數(shù)學(xué)中的常見工具,也常見于統(tǒng)計分析等應(yīng)用數(shù)學(xué)學(xué)科中。在物理學(xué)中,矩陣于電路學(xué)、力學(xué)、光學(xué)和量子物理中都有應(yīng)用;計算機科學(xué)中,三維動畫制作也需要用到矩陣。 矩陣的運算是數(shù)值分析領(lǐng)域的重要問題。將矩陣分解為簡單矩陣的組合可以在理論和實際應(yīng)用上簡化矩陣的運算。對一些應(yīng)用廣泛而形式特別的矩陣,例如稀疏矩陣和準(zhǔn)對角矩陣,有特定的快速運算算法。
來源:高三網(wǎng)
能發(fā)現(xiàn)自己知識上的薄弱環(huán)節(jié),在上課前補上這部分的知識,不使它成為聽課時的“絆腳石”。這樣,就會順利理解新知識,相信通過滿秩矩陣一定可逆嗎這篇文章能幫到你,在和好朋友分享的時候,也歡迎感興趣小伙伴們一起來探討。