手机免费看国产欧美精品_久久精品国产9久久综合_免费无码一区二区三区视频_亚洲综合精品一二三区在线

您的位置:首頁>大學(xué)生活>

教育資訊:正交矩陣一定可逆嗎

正交矩陣一定可逆。根據(jù)可逆矩陣的定義:矩陣A為n階方陣,若存在n階矩陣B,使得矩陣A、B的乘積為單位陣,則稱A為可逆陣,B為A的逆矩陣。而根據(jù)正交矩陣的定義:如果AAT=E(E為單位矩陣,AT表示“矩陣A的轉(zhuǎn)置矩陣”)或ATA=E,則n階實(shí)矩陣A稱為正交矩陣 。

正交矩陣一定可逆嗎

正交矩陣的相關(guān)性質(zhì)

1、方陣A正交的充要條件是A的行(列)向量組是單位正交向量組;

2、方陣A正交的充要條件是A的n個行(列)向量是n維向量空間的一組標(biāo)準(zhǔn)正交基;

3、A是正交矩陣的充要條件是:A的行向量組兩兩正交且都是單位向量;

4、A的列向量組也是正交單位向量組。

5、正交方陣是歐氏空間中標(biāo)準(zhǔn)正交基到標(biāo)準(zhǔn)正交基的過渡矩陣 。

正交矩陣的定義

如果AAT=E(E為單位矩陣,AT表示“矩陣A的轉(zhuǎn)置矩陣”)或ATA=E,則n階實(shí)矩陣A稱為正交矩陣。正交矩陣是實(shí)數(shù)特別化的酉矩陣,因此總是屬于正規(guī)矩陣。盡管我們在這里只考慮實(shí)數(shù)矩陣,但這個定義可用于其元素來自任何域的矩陣。正交矩陣畢竟是從內(nèi)積自然引出的,所以對于復(fù)數(shù)的矩陣這導(dǎo)致了歸一要求。正交矩陣不一定是實(shí)矩陣。實(shí)正交矩陣(即該正交矩陣中所有元都是實(shí)數(shù))可以看做是一種特別的酉矩陣,但也存在一種復(fù)正交矩陣,這種復(fù)正交矩陣不是酉矩陣。

來源:高三網(wǎng)

能發(fā)現(xiàn)自己知識上的薄弱環(huán)節(jié),在上課前補(bǔ)上這部分的知識,不使它成為聽課時的“絆腳石”。這樣,就會順利理解新知識,相信通過正交矩陣一定可逆嗎這篇文章能幫到你,在和好朋友分享的時候,也歡迎感興趣小伙伴們一起來探討。

免責(zé)聲明:本文由用戶上傳,如有侵權(quán)請聯(lián)系刪除!