勾股定理逆定理是指如果三角形兩條邊的平方和等于第三邊的平方,那么這個三角形就是直角三角形。最長邊所對的角為直角。
已知在△ABC中,設(shè)AB=c,AC=b,BC=a,且a2+b2=c2。求證∠ACB=90°
證明:在△ABC內(nèi)部作一個∠HCB=∠A,使H在AB上。
∵∠B=∠B,∠A=∠HCB
∴△ABC∽△CBH(有兩個角對應(yīng)相等的兩個三角形相似)
∴AB/BC=BC/BH,即BH=a2/c
而AH=AB-BH=c-a2/c=(c2-a2)/c=b2/c
∴AH/AC=(b2/c)/b=b/c=AC/AB
∵∠A=∠A
∴△ACH∽△ABC(兩邊對應(yīng)成比例且夾角相等的兩個三角形相似)
∴△ACH∽△CBH(相似三角形的傳遞性)
∴∠AHC=∠CHB
∵∠AHC+∠CHB=∠AHB=180°
∴∠AHC=∠CHB=90°
∴∠ACB=∠AHC=90°
做8個全等的直角三角形,設(shè)它們的兩條直角邊長分別為a、b,斜邊長為c,再做三個邊長分別為a、b、c的正方形,把它們像下圖那樣拼成兩個正方形。
發(fā)現(xiàn)四個直角三角形和一個邊長為a的正方形和一個邊長為b的正方形,剛好可以組成邊長為(a+b)的正方形;四個直角三角形和一個邊長為c的正方形也剛好湊成邊長為(a+b)的正方形。所以可以看出以上兩個大正方形面積相等??梢粤谐龉綖椋篴2+b2+4×1/2ab=c2++4×1/2ab,計算可得:a2+b2=c2。