要想學(xué)好數(shù)學(xué),同學(xué)們一定要學(xué)會(huì)歸納和總結(jié)知識點(diǎn),方便后期系統(tǒng)的復(fù)習(xí),接下來小編給大家總結(jié)歸納初一數(shù)學(xué)重要知識點(diǎn),供參考。
一元一次方程1.方程:先設(shè)字母表示未知數(shù),然后根據(jù)相等關(guān)系,寫出含有未知數(shù)的等式叫做方程。
2.一元一次方程
一元一次方程指只含有一個(gè)未知數(shù)、未知數(shù)的最高次數(shù)為1且兩邊都為整式的等式,叫做一元一次方程。求出方程中未知數(shù)的值叫做方程式的解。
(3)等式的性質(zhì)
①等式兩邊同時(shí)加上(或減去)同一個(gè)整式,等式仍然成立。
若a=b
那么a+c=b+c
②等式兩邊同時(shí)乘或除以同一個(gè)不為0的整式,等式仍然成立。
若a=b
那么有a·c=b·c或a÷c=b÷c(c≠0)
③等式具有傳遞性。
若a1=a2,a2=a3,a3=a4,……an=an,那么a1=a2=a3=a4=……=an
3.解方程式的步驟
解一元一次方程的步驟:去分母、去括號、移項(xiàng)、合并同類項(xiàng)、未知數(shù)系數(shù)化為1。
①去分母:把系數(shù)化成整數(shù)。
②去括號
③移項(xiàng):把等式一邊的某項(xiàng)變號后移到另一邊。
④合并同類項(xiàng)
⑤系數(shù)化為1。
有理數(shù)知識點(diǎn)1.大于0的數(shù)叫做正數(shù)。
2.在正數(shù)前面加上負(fù)號“-”的數(shù)叫做負(fù)數(shù)。
3.整數(shù)和分?jǐn)?shù)統(tǒng)稱為有理數(shù)。
4.人們通常用一條直線上的點(diǎn)表示數(shù),這條直線叫做數(shù)軸。
5.在直線上任取一個(gè)點(diǎn)表示數(shù)0,這個(gè)點(diǎn)叫做原點(diǎn)。
6.一般的,數(shù)軸上表示數(shù)a的點(diǎn)與原點(diǎn)的距離叫做數(shù)a的絕對值。
7.由絕對值的定義可知:
一個(gè)正數(shù)的絕對值是它本身;
一個(gè)負(fù)數(shù)的絕對值是它的相反數(shù);
0的絕對值是0。
8.正數(shù)大于0,0大于負(fù)數(shù),正數(shù)大于負(fù)數(shù)。
9.兩個(gè)負(fù)數(shù),絕對值大的反而小。
10.有理數(shù)加法法則:
(1)同號兩數(shù)相加,取相同的符號,并把絕對值相加。
(2)絕對值不相等的異號兩數(shù)相加,取絕對值較大的加數(shù)的負(fù)號,并用較大的絕對值減去較小的絕對值,互為相反數(shù)的兩個(gè)數(shù)相加得0。
(3)一個(gè)數(shù)同0相加,仍得這個(gè)數(shù)。
11.有理數(shù)的加法中,兩個(gè)數(shù)相加,交換交換加數(shù)的位置,和不變。
12.有理數(shù)的加法中,三個(gè)數(shù)相加,先把前兩個(gè)數(shù)相加,或者先把后兩個(gè)數(shù)相加,和不變。
13.有理數(shù)減法法則:減去一個(gè)數(shù),等于加上這個(gè)數(shù)的相反數(shù)。
14.有理數(shù)乘法法則:兩數(shù)相乘,同號得正,異號得負(fù),并把絕對值向乘。任何數(shù)同0相乘,都得0。
15.有理數(shù)中仍然有:乘積是1的兩個(gè)數(shù)互為倒數(shù)。
16.一般的,有理數(shù)乘法中,兩個(gè)數(shù)相乘,交換因數(shù)的位置,積相等。
17.三個(gè)數(shù)相乘,先把前兩個(gè)數(shù)相乘,或者先把后兩個(gè)數(shù)相乘,積相等。
18.一般地,一個(gè)數(shù)同兩個(gè)數(shù)的和相乘,等于把這個(gè)數(shù)分別同這兩個(gè)數(shù)相乘,再把積相加。
19.有理數(shù)除法法則:除以一個(gè)不等于0的數(shù),等于乘這個(gè)數(shù)的倒數(shù)。
20.兩數(shù)相除,同號得正,異號得負(fù),并把絕對值相除。0除以任何一個(gè)不等于0的數(shù),都得0。
不等式與不等式組1.不等式的解集:一個(gè)含有未知數(shù)的不等式的所有解,組成這個(gè)不等式的解集。
2.一元一次不等式:不等式的左、右兩邊都是整式,惟獨(dú)一個(gè)未知數(shù),并且未知數(shù)的最高次數(shù)是1,像這樣的不等式,叫做一元一次不等式。
3.一元一次不等式組:一般地,關(guān)于同一未知數(shù)的幾個(gè)一元一次不等式合在一起,就組成了一個(gè)一元一次不等式組。
4.一元一次不等式組的解集:一元一次不等式組中各個(gè)不等式的解集的公共部分,叫做這個(gè)一元一次不等式組的解集。
5.不等式的性質(zhì):
不等式的基本性質(zhì)1:不等式的兩邊都加上(或減去)同一個(gè)數(shù)(或式子),不等號的方向不變。
不等式的基本性質(zhì)2:不等式的兩邊都乘以(或除以)同一個(gè)正數(shù),不等號的方向不變。
不等式的基本性質(zhì)3:不等式的兩邊都乘以(或除以)同一個(gè)負(fù)數(shù),不等號的方向改變。
整式的重要知識點(diǎn)1.整式:整式為單項(xiàng)式和多項(xiàng)式的統(tǒng)稱。
2.整式加減
整式的加減運(yùn)算時(shí),如果遇到括號先去掉括號,再合并同類項(xiàng)。
(1)去括號:幾個(gè)整式相加減,如果有括號就先去括號,然后再合并同類項(xiàng)。
如果括號外的因數(shù)是正數(shù),去括號后原括號內(nèi)的符號與原來相同。
如果括號外的因數(shù)是負(fù)數(shù),去括號后原括號內(nèi)的符號與原來相反。
(2)合并同類項(xiàng):
合并同類項(xiàng)后,所得項(xiàng)的系數(shù)是合并前各項(xiàng)系數(shù)的和,且字母部分不變。
3.單項(xiàng)式:由數(shù)或字母的積組成的代數(shù)式叫做單項(xiàng)式,單獨(dú)的一個(gè)數(shù)或一個(gè)字母也叫做單項(xiàng)式。
4.多項(xiàng)式:由若干個(gè)單項(xiàng)式相加組成的代數(shù)式叫做多項(xiàng)式。
5.同底數(shù)冪是指底數(shù)相同的冪。
6.同底數(shù)冪的乘法:同底數(shù)冪相乘,底數(shù)不變,指數(shù)相加
7.冪的乘方法則:冪的乘方,底數(shù)不變,指數(shù)相乘。
8.積的乘方:積的乘方,先把積中的每一個(gè)因數(shù)分別乘方,再把所得的冪相乘。
9.單項(xiàng)式與單項(xiàng)式相乘
單項(xiàng)式與單項(xiàng)式相乘,把它們的系數(shù)、同底數(shù)冪分別相乘,對于只在一個(gè)單項(xiàng)式里含有的字母,則連同它的指數(shù)作為積的一個(gè)因式。
10.單項(xiàng)式與多項(xiàng)式相乘
單項(xiàng)式與多項(xiàng)式相乘,就是用單項(xiàng)式去乘多項(xiàng)式的每一項(xiàng),再把所得的積相加。
11.多項(xiàng)式與多項(xiàng)式相乘
多項(xiàng)式與多項(xiàng)式相乘,先用一個(gè)多項(xiàng)式的每一項(xiàng)乘另一個(gè)多項(xiàng)式的每一項(xiàng),再把所得的積相加。
12.同底數(shù)冪的除法:同底數(shù)冪相除,底數(shù)不變,指數(shù)相減。
13.單項(xiàng)式除以單項(xiàng)式:單項(xiàng)式相除,把系數(shù)、同底數(shù)冪分別相除后,作為商的因式;對于只在被除式中含有的字母,則連同它的指數(shù)一起作為商的一個(gè)因式。
14.多項(xiàng)式除以單項(xiàng)式:多項(xiàng)式除以單項(xiàng)式,先把多項(xiàng)式的每一項(xiàng)分別除以這個(gè)單項(xiàng)式,再把所得的商相加。
感謝閱讀,以上就是初一數(shù)學(xué)知識點(diǎn)歸納總結(jié)的相關(guān)內(nèi)容。希翼為大家整理的這篇初一數(shù)學(xué)知識點(diǎn)歸納總結(jié)內(nèi)容能夠解決你的困惑。