奇變偶不變,符號看象限是三角函數(shù)誘導公式的口訣。三角函數(shù)的誘導公式是指三角函數(shù)中,利用周期性將角度比較大的三角函數(shù),轉(zhuǎn)換為角度比較小的三角函數(shù)的公式。
三角函數(shù)誘導公式公式一:終邊相同的角的同一三角函數(shù)的值相等
設α為任意銳角,弧度制下的角的表示:
sin(2kπ+α)=sinα(k∈Z)
cos(2kπ+α)=cosα(k∈Z)
tan(2kπ+α)=tanα(k∈Z)
cot(2kπ+α)=cotα(k∈Z)
公式二:π+α的三角函數(shù)值與α的三角函數(shù)值之間的關系
設α為任意角,弧度制下的角的表示:
sin(π+α)=-sinα
cos(π+α)=-cosα
tan(π+α)=tanα
cot(π+α)=cotα
公式三:任意角α與 -α的三角函數(shù)值之間的關系
sin(-α)=-sinα
cos(-α)=cosα
tan(-α)=-tanα
cot(-α)=-cotα
公式四:利用公式二和公式三可以得到π-α與α的三角函數(shù)值之間的關系
sin(π-α)=sinα
cos(π-α)=-cosα
tan(π-α)=-tanα
cot(π-α)=-cotα
公式五:利用公式一和公式三可以得到2π-α與α的三角函數(shù)值之間的關系
sin(2π-α)=-sinα
cos(2π-α)=cosα
tan(2π-α)=-tanα
cot(2π-α)=-cotα
公式六:π/2±α與α的三角函數(shù)值之間的關系
(1)π/2+α與α的三角函數(shù)值之間的關系
sin(π/2+α)=cosα
cos(π/2+α)=-sinα
tan(π/2+α)=-cotα
cot(π/2+α)=-tanα
(2)π/2-α與α的三角函數(shù)值之間的關系
sin(π/2-α)=cosα
cos(π/2-α)=sinα
tan(π/2-α)=cotα
cot(π/2-α)=tanα
(3)3π/2+α的三角函數(shù)值之間的關系
sin(3π/2+α)=-cosα
cos(3π/2+α)=sinα
tan(3π/2+α)=-cotα
cot(3π/α+α)=-tanα
(4)3π/2-α的三角函數(shù)值之間的關系
sin(3π/2-α)=-cosα
cos(3π/2-α)=-sinα
tan(3π/2-α)=cotα
cot(3π/2-α)=tanα
感謝閱讀,以上就是奇變偶不變,符號看象限是什么意思的相關內(nèi)容。希翼為大家整理的這篇奇變偶不變,符號看象限是什么意思內(nèi)容能夠解決你的困惑。