三線合一,即在等腰三角形中頂角的角平分線,底邊的中線,底邊的高線,三條線互相重合。要證明等腰三角形三線合一很簡單,例如條件是等腰三角形和底邊上的高,然后證這個高也是頂角的平分線,底邊上的中線即可,證明方法可以用三角形全等來證明。
等腰三角形的性質(zhì)1.等腰三角形的兩個底角度數(shù)相等(簡寫成“等邊對等角”)。
2.等腰三角形的頂角平分線,底邊上的中線,底邊上的高相互重合(簡寫成“等腰三角形三線合一”)。
3.等腰三角形的兩底角的平分線相等(兩條腰上的中線相等,兩條腰上的高相等)。
4.等腰三角形底邊上的垂直平分線到兩條腰的距離相等。
5.等腰三角形的一腰上的高與底邊的夾角等于頂角的一半。
判定的方式定義法:在同一三角形中,有兩條邊相等的三角形是等腰三角形。
判定定理:在同一三角形中,如果兩個角相等,那么這兩個角所對的邊也相等(簡稱:等角對等邊)。
除了以上兩種基本方法以外,還有如下判定的方式:
在一個三角形中,如果一個角的平分線與該角對邊上的中線重合,那么這個三角形是等腰三角形,且該角為頂角。
在一個三角形中,如果一個角的平分線與該角對邊上的高重合,那么這個三角形是等腰三角形,且該角為頂角。
在一個三角形中,如果一條邊上的中線與該邊上的高重合,那么這個三角形是等腰三角形,且該邊為底邊。
顯然,以上三條定理是“三線合一”的逆定理。
有兩條角平分線(或中線,或高)相等的三角形是等腰三角形。
感謝閱讀,以上就是等腰三角形的三線合一需要幾個條件才干用的相關內(nèi)容。希翼為大家整理的這篇等腰三角形的三線合一需要幾個條件才干用內(nèi)容能夠解決你的困惑。